

Available online at www.sciencedirect.com

Journal of Catalysis 234 (2005) 414–420

JOURNAL OF CATALYSIS

www.elsevier.com/locate/jcat

³¹P MAS NMR and Raman study of a Co(Zn)MoP/γ-Al₂O₃ HDS catalyst precursor containing triethylene glycol

Daniele Nicosia, Roel Prins [∗]

Institute of Chemical and Bioengineering, Federal Institute of Technology (ETH), 8093 Zurich, Switzerland Received 12 April 2005; revised 4 July 2005; accepted 7 July 2005 Available online 11 August 2005

Abstract

The effect of triethylene glycol on phosphate-doped Co(Zn)Mo catalysts supported on γ -Al₂O₃ was studied by means of ³¹P magic angle spinning nuclear magnetic resonance (MAS NMR) and Raman spectroscopy. 31P MAS NMR experiments, carried out on ZnMo/*γ* -Al2O3 doped with phosphate and triethylene glycol, suggested that the P_2M_0 6023 ^{6−} species that formed in the impregnation solution decomposed to monophosphate and an Anderson-type aluminum molybdate species on contact with the support. The presence of triethylene glycol favored the formation of polyphosphate and PMo₁₂O₄₀^{3−} heteropolymolybdate species, but no P₂Mo₅O₂₃^{6−} was detected. The use of paramagnetic cobalt instead of zinc cations had a paramagnetic effect on the ³¹P-NMR signal of the PMo₁₂O₄₀^{3−}, indicating that the PM_{O12}O₄₀^{3−} species are bound to the promoter atoms. The close proximity of the promoter and Mo allows a better decoration of $MoS₂$ and improves the catalytic activity.

2005 Elsevier Inc. All rights reserved.

Keywords: CoMo hydrotreating catalyst; Phosphomolybdates; 31P MAS NMR; Paramagnetic effect of Co(II); Triethylene glycol; Raman

1. Introduction

Conventional hydrotreating catalysts are composed of cobalt and molybdenum supported on an inert support, such as γ -Al₂O₃, and can be prepared by depositing oxidic cobalt and molybdenum precursors on the support. The oxidic precursors are then presulfided at $400\degree$ C using a mixture of H_2 and H_2S . To improve the catal[y](#page-6-0)tic activity [of](#page-6-0) [th](#page-6-0)e catalysts, chelating ligands or phosphate, for example, can be added during the preparation of the catalyst [1–3]. When phosphate is added to the impregnation solution, it reacts with the molybdenum precursor and, depending on the reaction conditions, gives rise to a variety of phosphomolyb-date anions, including [Keggi](#page-6-0)n (PMo₁₂O₄₀^{3–}, PMo₁₂O₄₀⁷[–]), Dawson $(P_2Mo_{18}O_{62}^{6-})$, and diphospho-pentamolybdate $(P_2Mo_5O_{23}^{6-})$ anions [3,4]. Depending on the structure of the phosphomolybdate anions, the cobalt or nickel promoter

cations stay in solution as a solvated aquo-complex or become complexed by the phosphomolybdate anions. Griboval et al. reported that using $Co_xH_{(6-2x)}P_2Mo_5O_{23}$ as a catalyst precursor favors a higher Co*/*Mo atomic ratio in the final sulfided cata[lyst](#page-6-0) [an](#page-6-0)d improves the promotion of the active phase because of the better decoration of the cobalt on the $MoS₂$ edge [5,6]. The adsorption of phosphomo[lyb](#page-6-0)dates on a support has been described in detail. Cheng and Luthra reported that $PMo_{12}O_{40}^{3-}$ ions adsorb intact [7], whereas van Veen et al. a[nd](#page-6-0) [Kr](#page-6-0)aus and Prins reported that the $P_2Mo_5O_{23}^{6-}$ ion decomposes to AlPO₄ and molybdate on adsorption on γ -Al₂O₃ [8,9].

A recently published patent claims that the additi[on](#page-6-0) [of](#page-6-0) phosphate and glycols during catalyst preparation leads to highly active Co–Mo hydrodesulfurization catalysts [10]. We characterized the oxidic Co[Mo](#page-6-0) [c](#page-6-0)atalyst precursor containing phosphate and triethylene glycol (TEG) and prepared according to this patent recipe [11]. We found that TEG strongly interacts with the γ -Al₂O₃ support and thus prevents the decomposition of a Co-phosphomolybdate com-

Corresponding author. Fax: +41-1-6321162.

E-mail address: roel.prins@chem.ethz.ch (R. Prins).

^{0021-9517/\$ –} see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jcat.2005.07.011

plex during drying. As explained by Griboval et al., promotion of the active phase is thus improved because of the better cobalt decoration on the $MoS₂$ edge.

Here we describe the effect of TEG on the structure of the oxidic catalysts doped with phosphate as determined by $31P$ nuclear magnetic resonance (NMR) and Raman experiments on $Zn(Co)Mo$ catalysts supported on γ -Al₂O₃. When a paramagnetic atom or ion is in close proximity to an atom, broadening and shifting of the NMR signals of this atom are typically observed. Because c[obalt](#page-6-0) and nickel ions are [param](#page-6-0)agnetic, NMR has rarely been used for hydrotreating catalysts. However, De Canio et al. [12] and Kraus and Prins [13] used the paramagnetic effect to estimate the proximity of cobalt (or nickel) to various elements. The use of diamagnetic Zn instead of Co cations avoids the paramagnetic effect on the NMR signal, thus allowing better interpretation of the spectra. Therefore, we compared the $31P$ NMR of samples containing paramagnetic cobalt and diamagnetic zinc cations. Together with Raman measurements, these experiments provided insight into the role of TEG in phosphatecontaining CoMo-supported catalysts.

2. Experimental

By means of wet impregnation, CoMoP and Co[MoP](#page-6-0)TEG catalysts, suppor[ted](#page-6-0) [o](#page-6-0)n γ -Al₂O₃, were prepared according to the European patent application 0601722 B1 [\[10\]](#page-6-0) and our previous work [11]. ZnMoP and ZnMoP-TEG reference samples were prepared as described previously [12] for the corresponding Co-containing solutions, by dissolving 0.9 g $Zn_5(CO_3)_2(OH)_6 \cdot 7H_2O$ (1.6 mmol, Aldrich p.a.), 2.7 g MoO₃ powder (18.7 mmol, Fluka, purum, p.a.), 0.5 ml of an 85 wt% a[queou](#page-6-0)s H_3PO_4 solution (7.5 mmol H_3PO_4 , Aldrich, p.a.), and 2 ml of TEG (15 mmol, Aldrich, p.a.) in 10 ml of water [11]. The final solution was light green in color and had a pH of 2.5.

Before impregnation with one of the impregnating solutions, γ -Al₂O₃ (Condea Chemie) and the γ -Al₂O₃ support, impregnated with 0.8 ml of a 20% aqueous solution of TEG (pH adjusted to 2.5 by adding 35% HCl), were crushed, sieved to 90–125 µm grain size, and dried overnight in an oven at 120 ◦C. HCl was added to the TEG solution to obtain the same pH value as the original impregnation solution. The total water pore volume of γ -Al₂O₃ was 0.9 ml/g (the gas pore volume determined by BET was 0.45 ml*/*g; Table 1), and that of γ -Al₂O₃ + TEG was 0.4 ml/g. We used the same metal loading to compare samples prepared using the γ -Al₂O₃ + TEG support with the other catalysts; therefore, the γ -Al₂O₃ + TEG support had to be impregnated twice with 0.4 ml of the impregnation solution, as described previously [11]. After impregnation, the wet powder was dried overnight at 120 ◦C at a heating rate of 2 ◦C*/*min. All catalysts were prepared without applying calcination. Table 1 lists the investigated catalyst precursors. Elemental analysis of Co, Zn, Mo, and P, as well as nitrogen adsorption

measurements of the dried but not calcined samples, were performed as described elsewhere [11].

The nitrogen adsorption measurements were performed at liquid-nitrogen temperature with a Micromeritics TriStar 3000 device. Before measurement, the samples were degassed at $200 °C$ (not at $400 °C$, to prevent the decomposition of the TEG) at 10 Pa overnight. For the measurements of the γ -Al₂O₃ support, the degassing was carried out at 400 °C. ^{31}P mass absorption spectroscopy (MAS) experiments were carried out on a Bruker AMX-400 FT-NMR spectrometer at a magnetic field of 9.4 Tesla using a 4-mm CP-MAS probe head, with a resonance frequency of 161.98 MHz, spinning frequency of 12 kHz, and recycle delay of 1 s. The final spectrum resulted from the accumulation of 2000 transients. The chemical shift was referenced to $NH_4H_2PO_4$ (Fluka Purum, p.a.) (0 ppm).

Raman measurements of the samples and of reference compounds were performed on a Bruker Equinox 55 spectrometer equipped with a FT-Raman-Module FRA 106/S, a Nd:YAG laser (1064 nm, 300 mW), a CaF2 beam-splitter, and a Ge detector (D418-S) cooled by liquid nitrogen. The powder was pressed into an aluminum disk. The number of accumulated spectra of each sample was 4096. To prevent any effect induced to the specimen by the laser, we used a defocused low-power laser beam.

3. Results

3.1. 31P NMR: The effect of TEG on ZnMoP/γ -Al2O3

³¹P NMR spectra of the ZnMoP/γ-Al₂O₃, ZnMoP-TEG/ γ -Al₂O₃, [an](#page-2-0)d ZnMoP/ γ -Al₂O₃ + TEG samples were compared with the spectrum of a PO_4/γ - Al_2O_3 reference sample (Fig. 1). The ³¹P NMR spectra of ZnMoP/γ -Al₂O₃ and PO_4/γ -Al₂O₃ were almost identical, showing a broad band at around −8.2 ppm, typical of isolated phosphate ions on γ -Al₂O₃ [14]. The ³¹P NMR spectra of ZnMoP-TEG/ γ -Al₂O₃ and ZnMoP/ γ -Al₂O₃ + TEG showed a broad band with maximum at around -10 ppm and a sharp peak at around -5 ppm. The spectrum of ZnMoP/ γ -Al₂O₃ + TEG also showed a sharp shoulder at around 0 ppm.

Fig. 1. ³¹P MAS NMR spectra of PO₄/ γ -Al₂O₃, ZnMoP/ γ -Al₂O₃, ZnMoP-TEG/ γ -Al₂O₃, and ZnMoP/ γ -Al₂O₃ + TEG.

To elucidate the nature of the phosphorus atoms, which give rise to the sharp resonance peak in the $31P$ NMR spectra of ZnMoP-TEG/ γ -Al₂O₃ and ZnMoP/ γ -Al₂O₃ + TEG, we performed a deconvolution analysis of the spectra (Fig. 2; Table 2). The spectrum of the ZnMoP-TEG/ γ -Al₂O₃ was deconvol[uted](#page-6-0) in two contributions at -4.5 and -9.6 ppm (Table 2). The signal at -4.5 ppm may arise from $PMo_{12}O_{40}^{3-}$ [15]. The possibility that this signal may have arisen from an isolated zinc phosphate salt was ruled out, because Cheethan et al. reported that the phosphorus si[gnals](#page-6-0) are between 0 and 10 ppm for $α$ -Zn₃(PO₄)₂ [and](#page-6-0) β -Zn₃(PO₄)₂ and between −10 and −20 ppm for α -Zn₂P₂O₇ [16]. The broad signal at -9.6 ppm was assigned to polyphosphate [14]. The signal of $\text{ZnMoP}/\gamma \text{-} \text{Al}_2\text{O}_3 +$ TEG was deconvoluted into three signals at -1 , -4.7 , and −9.6 ppm (Fig. 2; Table 2). The signals at −9.6 and -4.7 ppm belong to polyphosphate and PMo₁₂O₄₀^{3–}, respectively, whereas the signal at -1 ppm may arise from

Fig. 2. ³¹P MAS NMR spectra (\cdots) of ZnMoP-TEG/ γ -Al₂O₃ and ZnMoP/ γ -Al₂O₃ + TEG and deconvolution (--).

isolated $H_2PO_4^-$. The analysis of the peak areas (Table 2) shows that *>*80% of the phosphorus atoms in both TEGcontaining samples are present as polyphosphate, and about 15% are present as $PMo_{12}O_{40}^{3-}$.

3.2. 31P NMR: The effect of TEG in CoMoP/γ -Al2O3

The paramagnetism of Co[\(II\)](#page-6-0) [h](#page-6-0)as been used in NMR spectroscopy to check for the presence of $Co²⁺$ in the neighborhood of the probing nuclei [17]. When cobalt is in close proximity to the probing atom, it causes broadening and

Fig. 3. ³¹P MAS NMR spectra of CoMoP/γ -Al₂O₃, $\text{CoMoP-TEG}/\gamma$ γ -Al₂O₃, and CoMoP/ γ -Al₂O₃ + TEG.

shifting of the NMR signals. Because of their high magnetic moment, paramagnetic cobalt ions strongly decrease the relaxation time of phosphorus; consequently, the ^{31}P NMR peaks become broader. The peaks also shift in proportion to the electron density of Co^{2+} on the ³¹P nucleus. Therefore, the higher the number of Co ions around a P atom, the stronger the paramagnetic effect. Comparison of the ³¹P NMR spectrum of the PO₄/ γ -Al₂O₃ sample with the ³¹P NMR spectra of the CoMoP/ γ -Al₂O₃, CoMoP-TEG/ γ -Al₂O₃, and CoMoP/ γ -Al₂O₃ + TEG samples shows that all of the spectra had a broad signal between 50 and −50 ppm with two side bands on either side of the central peak. However, whereas the main signal of the CoMoP/ γ -Al₂O₃ showed an isotropic chemical shift of -7.5 ppm, close to that of PO_4/γ -Al₂O₃ and ZnMoP/ γ -Al₂O₃, the main 31P-NMR signal of the other two Co-containing samples shifted to a higher field (−9.5 ppm). There was no sharp peak between 0 and -10 ppm in the ³¹P NMR spectra of CoMoP-TEG/ γ -Al₂O₃ and CoMoP/ γ -Al₂O₃ + TEG.

3.3. Laser Raman spectroscopy

Laser Raman spectroscopy (LRS) is a very sensitive technique for probing the chemical state of molybdenum. The CoMoP and ZnMoP impregnation solutions gave exactly the same LRS spectrum, which is typical of the $P_2M_05O_{23}^{6-}$

Fig. 4. Raman spectra of ZnMoP-TEG/ γ -Al₂O₃, ZnMoP/ γ -Al₂O₃ + TEG, and ZnMo[P-TEG](#page-6-0)/*γ*-Al₂O₃.

complex [18]; as we showed in previous work, the presence of TEG did not affect the formation of this species [11].

Fig. 4 gives the LRS spectra of ZnMoP/*γ* -Al₂O₃, ZnMoP/ γ -Al₂O₃ + TEG, and ZnMoP-TEG/ γ -Al₂O₃. The spectrum of ZnMoP/γ -Al₂O₃ has an intense band between 1000 and 850 cm−1, composed of a main peak at 950 and a shoulder at about 900 cm−1. Two signals are present at 360 [and](#page-6-0) 220 cm−1. According to the literature, these three signals can be attributed to the Al(OH)₆Mo₆O₁₈^{3–} species [19]. The LRS spectra of the ZnMoP/ γ -Al₂O₃ + TEG and ZnMoP-TEG/ γ -Al₂O₃ samples are similar b[ut](#page-6-0) [v](#page-6-0)ery different from the spectrum of the TEG-free sample (Fig. 4). The peak at 1070 cm−¹ is typical of polyphosphate [1]. The spectrum of ZnMoP-TEG/*γ*-Al₂O₃ showed a broad asymmetric signal with a [peak](#page-6-0) at 830 cm⁻¹. This signal and the weak signals at 1473 and 1280 cm⁻¹ were assigned to the presence of TEG [11], the C–O vibration of which gives rise to the signal at 830 cm⁻¹. The same TEG signals at 830, 1280, and 1473 cm⁻¹ also were detected in the spectrum of ZnMoP/γ -Al₂O₃ + TEG (Fig. 4). In the region between 1000 and 950 cm−¹ a signal corresponding to a molybdate species was detected. Unfortunately, the broadness of this signal prevents us from definitively identifying the molybdate species present in the dried samples. Moreover, the broad lines of TEG located at about 830 cm−¹ make the interpretation even more uncertain. Even though we tried to

Fig. 5. Effect of thermal treatments of $\text{ZnMoP}/\gamma \text{-} \text{Al}_2\text{O}_3 + \text{TEG}$.

improve the quality of the spectra by measuring at liquid nitrogen temperature, we could not obtain better results.

To confirm that the main signal at 830 cm^{-1} arose from TEG, we calcined the ZnMoP/γ -Al₂O₃ + TEG sample at 250 and $500\,^{\circ}$ C for 3 h and collected the LRS spectra of the resulting samples. Fig. 5 shows the LRS spectra of the calcined samples together with the $\text{ZnMoP}/\gamma \text{-} \text{Al}_2\text{O}_3 + \text{TEG}$ sample dried at 120 °C. After heating at 500 °C, the peak at 830 cm−¹ disappeared, and the resulting spectrum showed the presence of heptamolybdate only.

The use of cobalt instead of zinc had no influence on the LRS spectra of the corresponding Co-containing samples (Fig. 6). Al(OH)₆Mo₆O₁₈^{3−} was detected in the CoMoP/ γ -Al₂O₃ sample (band at 950 and shoulder at 905 cm⁻¹).

4. Discussion

The presence of TEG in the phosphate-doped Zn(Co)Mo catalysts supported on alumina affects the structural properties of the oxidic metal precursors. The reaction between phosphate and molybdate in aqueous solution leads to the formation of the $P_2Mo_5O_{23}^{6-}$ heteropolymolybdate species. Cations in the solution together with the heteropolymolybdate species may be complexed as counter ions. We pre-

Fig. 6. Raman spectra of CoMoP-TEG/γ-Al₂O₃, CoMoP/γ-Al₂O₃ + TEG, and CoMoP-TEG/*γ* - Al₂O₃.

viously reported that the $31P$ NMR spectrum of a solution containing diphosphopentamolybdate [and](#page-6-0) Co(II) showed a strong paramagnetic effect, suggesting the formation of a Co-diphosphopentamolybdate species [11].

During [impre](#page-6-0)gnation of the γ -Al₂O₃ support, the phosphomolybdate species decompose to phosphate and heptamolybdate [7,8]. At low P loading (*<*2 wt%) the adsorption of phosphate usually leads to monophosphate, whereas molybdenum ca[n](#page-6-0) [be](#page-6-0) [p](#page-6-0)resent as monomolybdate (Mo loading *<*12 wt%) or as heptamolybdate on the surface of the alumina support [20]. TEG interacts strongly with the alumina su[pport](#page-6-0) and may inhibit the full decomposition of the phosphomolybdate species formed in the impregnation solution [11]. The ³¹P NMR spectrum of a PO_4/γ -Al₂O₃ reference sample (with 1.5 wt% P), prepar[ed](#page-2-0) [by](#page-2-0) impregnating the dry support with a diluted solution of H3PO4, showed a broad signal centered at −8 ppm (Fig. 1). As reported her[ein,](#page-2-0) [this](#page-2-0) [signal](#page-2-0) arises from monophosphate. The same result was obtained f[or](#page-2-0) [ZnM](#page-2-0)oP/γ-Al₂O₃ and CoMoP/ γ -Al₂O₃ (Figs. 1 and 3). The ³¹P NMR spectrum of the ZnMoP/γ -Al₂O₃ sample (Fig. 1) showed that phosphorus is present as monophosphate on the support. However, in the presence of TEG, the broad signal shifted to −9.6 ppm, and thus polyphosphate was detected. The adsorption of phosphate on γ -Al₂O₃ was studied extensively by van Eck et al. [14]. Their ^{31}P and ^{27}Al NMR results showed that the polymerization of phosphate is favored when the support cannot accommodate phosphate as a mono[layer.](#page-1-0) [B](#page-1-0)y comparing the BET surface area and the pore volume of bare γ -Al₂O₃ and the γ -Al₂O₃ + TEG sample (Table 1), it becomes clear that TEG causes a decrease in the surface area and pore volume and thus favors the formation of polyphosphate.

The $31P$ NMR results on the Zn-containing samples proved that TEG not only favors the polymerization of phosphate, but also leads to the formation of the Keggin-type heterop[olymolyb](#page-2-0)date species PMo12O40³−. The Mo*/*P ratio of this species is 12. The deconvolution of the ^{31}P NMR spectra (Table 2) showed that the phosphorus atoms give rise to about the same amount of the heteropolymolybdate species in both the Zn- and TEG-containing samples. However, 15% of the phosphorus bound to Mo as $PMo_{12}O_{40}^{3-}$ is not sufficient to account for the total amount of molybdenum. From the initial ratio of $Mo/P = 2.5$, the percentage of Mo atoms that form $PMo_{12}O_{40}^{3-}$ species should be $(15 \times 12/2.5) = 72\%$. Therefore, the rest of the Mo m[ight](#page-6-0) be present in the form of Al $(OH)_6Mo_6O_{18}^{3-}$.

During the impregnation step, $P_2M_0sO_{23}^{6-}$ reacts with th[e](#page-6-0) alumina surface to form phosphate [an](#page-6-0)d $MoO₄^{2–} [8]$. Whereas phosphate reacts with acidic OH_s Al sites, MoO₄^{2–} preferentially reacts with basic sites [9][.](#page-6-0) [We](#page-6-0) previously showed that TEG reacts with the basic OH_s Al sites, thus inhibiting the adsorption of $P_2M_0S_2S_0^{-1}$ [11]. When impregnating γ -Al₂O₃ with the TEG-containing solution, P_2M_0 ₅O₂₃^{6−} a[n](#page-6-0)d TEG compete for the same adsorpti[on](#page-6-0) on the alumina sites. When $P_2Mo_5O_{23}^{6-}$ adsorbs first, it decomposes and phosphate adsorbs on acidic OHs Al sites [9]. The adsorption of molybdate is more complicated, because TEG adsorbs on the basic OHs Al sites as well. When TEG blocks the basic OHs Al sites, there are fewer sites available for the molybdate released by the decomposition of $P_2M_0S_2S_0$ ^{6−}. This causes a decrease in the adsorption probability of molybdate; as a result, the local Mo*/*P ratio of the impregnation solution increases. This might explain the formation of the $PMo_{12}O_{40}^{3-}$ species. The fact that this species has also been detected in ZnMoP/γ -Al₂O₃ + TEG suggests [that](#page-4-0) [it](#page-4-0) [is](#page-4-0) more stable on the surface film formed by TEG.

LRS spectra of the corresponding Co-containing samples (Fig. 6) suggested that the chemical state of molybdenum is the same for both systems. Thus, Zn-containing samples seem to be good model systems for the Co-containing samples. The LRS spectra provided in this work are not used for the speciation of molybdate in these very complex systems, but give us an idea of the similarity of the two systems. ²⁷Al NMR experiments carried out on our samples (results not given here) showed only the two typical Al bands corresponding to the tetrahedral and octahedral geometry of γ -Al₂O₃, as was expected given the fact that our systems are composed mostly of γ -Al₂O₃. The Anderson-type AlMo₆ structure is expected to be present in very small amounts on the alumina surface, thus giving rise in the 27 Al NMR to an extremely small signal compared to that from γ -Al₂O₃. Moreover, the presence of side bands in the spectra makes the search for such a small signal almost impossible. Therefore, in our opinion, classic 27 Al NMR experiments are not useful for investigating the presence of the Andersontype AlMo_6 structure on the alumina surface. An alternative NMR technique that would e[xclude](#page-6-0) most of the bulk Al atoms from the spectra is the cross-polarization 27 Al MAS NMR, as used by Carrier et al. [19]. However, the purpose of the present study was to investigate the effect of TEG on both promoter atom and Mo in the phosphate-doped catalyst precursors.

The ³¹P NMR spectrum of the CoMoP/ γ -Al₂O₃ sample shows only one phosphorus signal centered at about −8 ppm, indicating the presence of monophosphate. The ³¹P NMR spectra of the Co and TEG-containing samples show only one broad signal at around −9.5 ppm, indicating the formation of polyphosphate. No signal arising from the heteropolymolybdate was detected.

The presence of paramagnetic Co instead of diamagnetic Zn cations caused broadening of the heteropolymolybdate signals in the $31P$ NMR spectra of the Zn-containing samples. This suggests that Co is in close proximity to the heteropolymolybdate species and proves that in the presence of TEG, a higher number of cobalt atoms are complexed by the phosphomolybdate species. This may lead to the formation of a more homogeneous Co–Mo–S type II structure and to a better performance of the final sulfided catalyst.

5. Conclusion

Using phosphate and TEG in the preparation of CoMo catalysts leads to an increase in the HDS activity. We previously showed that phosphate in the impregnation solution acts as a carrier of cobalt and molybdate by forming a protonated cobalt-diph[osph](#page-6-0)opentamolybdate anion that decomposes into polyphosphate and molybdate during the impregnation of γ -Al₂O₃ [11]. PO₄ is present as monophosphate, whereas molybdate further reacts with alumina to form an Anderson-like aluminum molybdate species. NMR experiments are in progress to confirm this asset. By decreasing the surface area and pore volume of the γ -Al₂O₃, TEG favors the formation of polyphosphate. The structure of cobaltdiphosphopentamolybdate is not retained but is converted to a PM $o_{12}O_{40}^{3-}$ polymolybdate species. It is likely that this species is bound to the promoter atom. During sulfidation, this may lead to a better decoration of the promoter on the final $MoS₂$ slabs, thus explaining the improvement in the catalytic performance of these catalysts.

Acknowledgments

The authors thank Anuji Abraham for her kind help with the NMR measurements. This project was supported by the Swiss National Science Foundation.

References

- [1] R. Iwamoto, J. Grimblot, Adv. Catal. 44 (2000) 417.
- [2] R. Cattaneo, T. Weber, T. Shido, R. Prins, J. Catal. 191 (2000) 225.
- [3] M. Sun, D. Nicosia, R. Prins, Catal. Today 86 (2003) 173.
- [4] L. Pettersson, I. Andersson, L.O. Ohman, Acta Chem. Scand. A 39 (1985) 53.
- [5] L. Pettersson, I. Andersson, L.O. Ohman, Inorg. Chem. 25 (1986) 4726.
- [6] A. Griboval, P. Blanchard, E. Payen, M. Fournier, J.L. Dubois, Stud. Surf. Sci. Catal. 1061 (1997) 81.
- [7] A. Griboval, P. Blanchard, E. Payen, M. Fournier, J.L. Dubois, Catal. Today 45 (1998) 277.
- [8] W.C. Cheng, N.P. Luthra, J. Catal. 109 (1988) 163.
- [9] J.A.R. van Veen, P.A.J.M. Hendriks, E.J.G.M. Romers, R.R. Andrea, J. Phys. Chem. 94 (1990) 5282.
- [10] H. Kraus, R. Prins, J. Catal. 164 (1996) 251.
- [11] E. Yamaguchi, Y. Uragami, H. Yokozuka, K. Uekusa, T. Yamaguchi, S. Abe, T. Kamo, T. Suzuki, European Patent Application 0601722 B1 (1998), to Sumitomo Metal.
- [12] D. Nicosia, R. Prins, J. Catal. 229 (2005) 424.
- [13] E.C. De Canio, J.C. Edwards, T.R. Scalzo, D.A. Storm, J.W. Bruno, J. Catal. 132 (1991) 498.
- [14] H. Kraus, R. Prins, J. Catal. 170 (1997) 20.
- [15] E.R.H. van Eck, A.P.M. Kentgens, H. Kraus, R. Prins, J. Phys. Chem. 99 (1995) 16080.
- [16] T. Okura, N. Mizuno, M. Misono, Adv. Catal. 41 (1996) 113.
- [17] A.K. Cheetham, N.J. Clayden, C.M. Dobson, R.J.B. Jakeman, J. Chem. Soc., Chem. Commun. (1986) 195.
- [18] M.N. Harris, C.M. Bertolucci, L.J. Ming, Inorg. Chem. 41 (2002) 5582.
- [19] L. Lyhamn, L. Pettersson, Chem. Scripta 12 (1977) 142.
- [20] X. Carrier, J.F. Lambert, M. Che, J. Am. Chem. Soc. 119 (1997) 10137.